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1. INTRODUCTION

As is known, the receptance matrix (also called the frequency response matrix) is an
important matrix which interrelates the input and output of a damped linear
discrete mechanical system which is subject to harmonical forcing as input. There
are many publications in the literature on this subject. Some of the recent
publications are references [1}3]. Yang presented in reference [1] an exact method
for evaluating the receptances of non-proportionally damped dynamic systems.
Based on a decomposition of the damping matrix, an iteration procedure is
developed which does not require matrix inversion. In reference [2], Lin et al.
developed a new and e!ective method to derive structural design sensitivities,
which include both frequency response function sensitivities and eigenvalue and
eigenvector sensitivities from limited vibration test data. The study of Mottershead
[3] was concerned with the zeros of structural frequency response functions and
their sensitivities.

The present study is concerned with a viscously damped linear discrete
mechanical system the co-ordinates of which are assumed to be subject to several
linear constraint equations.

In a series of papers, the present author has investigated the characteristic
equation of such constrained systems [4}6]. The main aim here is the establishment
of the frequency response matrix of the constrained system described above in
terms of the frequency response matrix of the unconstrained system and the
coe$cient vectors of the constraint equations.

2. THEORY

The motion of a viscously damped linear discrete mechanical system with
n degrees of freedom which is harmonically excited, is governed in the physical
space by the matrix di!erential equation of order two

MqK (t)#Dq5 (t)#Kq (t)"F1 e*ut, (1)
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where M, D and K are the (n]n) mass, damping and sti!ness matrices respectively.
q is the (n]1) vector of generalized co-ordinates. F1 is the forcing vector and
u denotes the forcing frequency.

Substitution of

q(t)"q6 e*ut (2)

into equation (1) yields the relation

q6 "H(u)F1 (3)

between the constant part of the input and response vectors. The complex matrix

H(u)"(!u2M#iuD#K)~1 (4)

is referred to as the (complex) frequency response matrix or the receptance matrix.
It is also referred to as the admittance matrix or dynamic in#uence coe$cient
matrix [7].

Now assume that the co-ordinates of the mechanical system are subject to linear
constraint equations of the form

aT
p
q"0, p"1,2, l, (5)

where the pth vector of constraint coe$cients is de"ned as aT
p
"[a

1p
,2, a

np
].

The main concern of the present study is to establish the receptance matrix of the
constrained system described above.

By means of the Lagrange's equations formalism in connection with Lagrange's
multipliers, equations (1) and (5) can be combined as [8]

MqK#Dq5 #Kq"
l
+
j/1

k
j
a
j
#F

j
e*ut, (6)

where k
j
denotes the corresponding Lagrange multiplier. If harmonical solutions of

form (2) and

k
j
"kN

j
e*ut (7)

are substituted into equation (6)

q6 "
l
+
j/1

k6
j
Ha

j
#HF1 (8)
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is obtained. After substitution of q6 into the constrained equations (5), the following
equations are obtained for the determination of the unknown amplitudes k6

j

[aT
p
Ha

1
]k6

1
#2#[aT

p
Ha

l
]k6

l
"!aT

p
HF1 , p"1,2, l. (9)

From this set of l inhomogeneous equations for k6
p
,

l6 "!A~1
ll

A
ln
HF1 (10)

is obtained where the following de"nitions are introduced:

l6 "[k6
1
,2, k66

l
]T, AT

ln
"[a

1
,2, a

l
], F1 "[FM

1
,2, FM

n
]T (11)

and the (p, q)th element of the (l]l) matrix A
ll

is de"ned as aT
p
Ha

q
.

Using the above de"nitions, expression (8) can be reformulated as,

q6 "HAT
ln
l6 #HF1 . (12)

The substitution of l6 from equation (10) into equation (12) yields

q6 "H[I!AT
ln

A~1
ll

A
ln
H]F1 , (13)

which in turn gives the receptance matrix of the constrained system in terms of the
receptance matrix of the unconstrained system and the vectors of constraint
coe$cients, in the form

H
cons

"H[I!AT
ln

A~1
ll

A
ln
H]. (14)

I is the (n]n) unit matrix. In the special case of only one constraint equation, i.e.,
l"1 the receptance matrix simpli"es to

H
cons

"HCI!
a
1
aT
1
H

aT
1
Ha

1
D . (15)

3. NUMERICAL EVALUATIONS

This section is devoted to the testing of the reliability of the expressions obtained.
The simple system in Figure 1 is taken as an illustrative example. It consists of
a vibrational system with three degrees of freedom, viscously damped at the "rst
mass. Each mass m

i
is acted upon by a harmonically varying force F

i
, with the

forcing frequency u. The system matrices are as follows:

M"diag (m
1
, m

2
, m

3
), D"

c
1

0 0

0 0 0

0 0 0

, K"

k
1
#k

2
!k

2
0

!k
2

k
2
#k

3
!k

3
0 !k

3
k
3

.

(16)



Figure 1. The unconstrained three-degrees-of-freedom system used as the sample.

Figure 2. The mechanical system obtained from the system in Figure 1 by imposing the constraint
q
1
"q

2
.
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Assume that the following numerical values are chosen for the physical parameters
of the system: k

1
"10 N/m, k

2
"10 N/m, k

3
"20 N/m, m

1
"1 kg, m

2
"2 kg,

m
3
"4 kg, c

1
"10 N/m/s, u"2 rad/sec.

The receptance matrix given in equation (4) is obtained as

H"

0)0247!0)0286i !0)0032#0)0037i !0)0159#0)0183i

!0)0032#0)0037i !0)0124!0)0005i !0)0621!0)0024i

!0)0159#0)0183i !0)0621!0)0024i !0)0603!0)0118i

. (17)

Now, assume that the system in Figure 1 is, due to some reason, subject to
a constraint like q

1
"q

2
. The mechanical system so constrained is shown in

Figure 2. It is desired to obtain the receptance matrix of this system.
It is easy to see that the constraint coe$cient vector is

a
1
"[1 !1 0]T. (18)

Denote the properties of the constrained system by the subscript &&cons''. The
corresponding matrices and vectors are

M
cons

"C
(m

1
#m

2
)

0
0
m

3
D , D

cons
"C

c
1
0

0
0D , K

cons
"C

(k
1
#k

3
)

!k
3

!k
3

k
3
D ,

(19)
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q
cons

"q6
cons

e*ut"C
qN
1cons

qN
3cons

D e*ut , F
cons

"F1
cons

e*ut"C
(F1

1
#F1

2
)

F1
3

De*ut ,

q6
cons

"H
cons

F1
cons

,

where

H
cons

"(!u2M
cons

#iuD
cons

#K
cons

)~1. (20)

If the numerical values chosen are substituted above, the receptance matrix of the
constrained system is obtained as

H
cons

"!C
0)0115#0)0028i
0)0576#0)0140i

0)0576#0)0140i
0)0378#0)0702iD . (21)

On the other hand, substituting equations (17) and (18) into formula (15) of the
present study yields

H
cons

"!

0)0115#0)0028i 0)0115#0)0028i 0)0576#0)0140i

0)0115#0)0028i 0)0115#0)0028i 0)0576#0)0140i

0)0576#0)0140i 0)0576#0)0140i 0)0378#0)0702i

. (22)

The fact that the dimensions of H
cons

are di!erent in equations (21) and (22) should
cause no confusion. It is clearly seen that both forms of the receptance matrices lead
to the same input}output relations:

qN
1
"!(0)0115#0)0028i) (F1

1
#F1

2
)!(0)0576#0)0140i)F1

3
,

qN
2
"qN

1
,

qN
3
"!(0)0576#0)0140i) (F1

1
#F1

2
)!(0)0378#0)0702i)F1

3
. (23)

4. CONCLUSIONS

This study is concerned with a viscously damped linear discrete mechanical
system which is excited harmonically. The co-ordinates of the system are assumed
to be subject to several linear constraint equations. The main concern is
the establishment of the receptance matrix of the so constrained system in terms of
the receptance matrix of the unconstrained system and the coe$cient vectors of the
constraint equations.
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